تحريك متوسط مشاكل التنبؤ
أور-نوتس عبارة عن سلسلة من الملاحظات التمهيدية حول الموضوعات التي تقع تحت عنوان واسع من مجال بحوث العمليات (أور). كانوا يستخدمون أصلا من قبل لي في تمهيدية أو بالطبع أعطي في كلية إمبريال. وهي متاحة الآن للاستخدام من قبل أي طالب والمعلمين المهتمين في أو تخضع للشروط التالية. يمكن العثور على قائمة كاملة بالموضوعات المتوفرة في أور-نوتس هنا. أمثلة للتنبؤ التنبؤ مثال عام 1996 امتحان أوغ ويظهر الطلب على منتج في كل من الأشهر الخمسة الماضية أدناه. استخدام المتوسط المتحرك لمدة شهرين لتوليد توقعات للطلب في الشهر 6. تطبيق تمهيد الأسي مع ثابت تمهيد من 0.9 لتوليد توقعات للطلب على الطلب في الشهر 6. أي من هذين التنبؤين تفضل ولماذا تتحرك الشهرين متوسط لشهرين إلى خمسة تعطى من قبل: التوقعات للشهر السادس هو مجرد المتوسط المتحرك للشهر قبل ذلك أي المتوسط المتحرك للشهر 5 م 5 2350. تطبيق تمهيد الأسي مع ثابت تمهيد من 0.9 نحصل على: كما كان من قبل فإن توقعات الشهر السادس هي مجرد المتوسط للشهر 5 M 5 2386 لمقارنة التوقعين نحسب متوسط الانحراف التربيعي (مسد). إذا قمنا بذلك نجد أنه بالنسبة للمتوسط المتحرك مسد (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup23 16.67 وبالنسبة للمتوسط الملمس أضعافا مع ثابت التمهيد 0.9 مسد (13-17) sup2 (16.60 - 19) sup2 (18.76 - 23) sup2 (22.58 - 24) sup24 10.44 وبشكل عام نرى أن التمهيد الأسي يبدو أنه يعطي أفضل التوقعات قبل شهر واحد حيث أن لديه مسد أقل. وبالتالي نحن نفضل توقعات 2386 التي تم إنتاجها من قبل التمهيد الأسي. التنبؤ مثال 1994 امتحان أوغ ويبين الجدول أدناه الطلب على ما بعد البيع الجديد في متجر لكل من الأشهر ال 7 الماضية. احسب المتوسط المتحرك لمدة شهرين لمدة شهرين إلى سبعة. ماذا سيكون توقعاتك للطلب في الشهر الثامن تطبيق التمهيد الأسي مع ثابت التمهيد من 0.1 لاستخلاص توقعات للطلب في الشهر الثامن. أي من التنبؤين في الشهر الثامن تفضلون ولماذا يعتقد حارس متجر أن العملاء يتحولون إلى هذا الجديد بعد البيع من العلامات التجارية الأخرى. ناقش كيف يمكنك نموذج سلوك التحويل هذا وبيان البيانات التي ستحتاجها لتأكيد ما إذا كان هذا التحويل يحدث أم لا. ويعطى المتوسط المتحرك لشهرين إلى سبعة أشهر من قبل: التوقعات لشهر الثامن هو مجرد المتوسط المتحرك للشهر قبل ذلك أي المتوسط المتحرك لشهر 7 م 7 46. تطبيق تمهيد الأسي مع ثابت تمهيد من 0.1 نحن الحصول على: كما هو الحال قبل توقعات الشهر الثامن هو مجرد المتوسط للشهر 7 M 7 31.11 31 (كما أننا لا يمكن أن يكون الطلب كسور). لمقارنة اثنين من التوقعات نحسب متوسط الانحراف التربيعي (مسد). إذا قمنا بذلك نجد أنه بالنسبة للمتوسط المتحرك والمتوسط السلس المتوسط مع ثابت التمهيد 0.1 بشكل عام فإننا نرى أن المتوسط المتحرك لشهرين يبدو أنه يعطي أفضل التوقعات قبل شهر واحد حيث أن لديه مسد أقل. وبالتالي فإننا نفضل توقعات 46 التي تم إنتاجها من قبل المتوسط المتحرك لمدة شهرين. لفحص التحول سنحتاج إلى استخدام نموذج عملية ماركوف، حيث الدول العلامات التجارية، ونحن بحاجة إلى معلومات الحالة الأولية واحتمالات التحول العملاء (من الدراسات الاستقصائية). نحن بحاجة إلى تشغيل النموذج على البيانات التاريخية لمعرفة ما إذا كان لدينا تناسب بين النموذج والسلوك التاريخي. التنبؤ مثال 1992 امتحان أوغ ويبين الجدول أدناه الطلب على علامة تجارية معينة من الحلاقة في متجر لكل من الأشهر التسعة الماضية. احسب المتوسط المتحرك لمدة ثلاثة أشهر للأشهر من 3 إلى 9. ما هي توقعاتك للطلب في الشهر العاشر تطبيق التجانس الأسي مع ثابت التمهيد 0.3 لاستخلاص توقعات للطلب في الشهر العاشر. أي من التنبؤين للشهر العشر تفضلون ولماذا يعطى المتوسط المتحرك لمدة ثلاثة أشهر للأشهر 3 إلى 9 من خلال: التوقعات لشهر 10 هي مجرد المتوسط المتحرك للشهر قبل ذلك أي المتوسط المتحرك لشهر 9 م 9 20-33. وبالتالي (كما أننا لا يمكن أن يكون الطلب كسور) توقعات الشهر 10 هو 20. تطبيق التمهيد الأسي مع ثابت تمهيد من 0.3 نحصل على: كما كان قبل توقعات لشهر 10 هو مجرد متوسط للشهر 9 M 9 18.57 19 (كما نحن لا يمكن أن يكون الطلب كسور). لمقارنة اثنين من التوقعات نحسب متوسط الانحراف التربيعي (مسد). إذا قمنا بذلك نجد أنه بالنسبة للمتوسط المتحرك والمتوسط المتحرك الأسي مع ثابت التمهيد 0.3 بشكل عام فإننا نرى أن المتوسط المتحرك لمدة ثلاثة أشهر يبدو أنه يعطي أفضل التوقعات قبل شهر واحد كما أن لديه مسد أقل. وبالتالي نحن نفضل توقعات 20 التي تم إنتاجها من قبل المتوسط المتحرك لمدة ثلاثة أشهر. التنبؤ مثال 1991 امتحان أوغ ويبين الجدول أدناه الطلب على علامة تجارية معينة من جهاز الفاكس في متجر في كل من الأشهر الاثني عشر الماضية. احسب المتوسط المتحرك لمدة أربعة أشهر للأشهر من 4 إلى 12. ما هي توقعاتك للطلب في الشهر 13 تطبيق التمهيد الأسي مع ثابت التمهيد 0.2 لاستخلاص توقعات للطلب في الشهر 13. أي من اثنين من التوقعات في الشهر 13 هل تفضل ولماذا العوامل الأخرى التي لا تؤخذ في الاعتبار في الحسابات أعلاه قد تؤثر على الطلب على جهاز الفاكس في الشهر 13 ويعطى المتوسط المتحرك لمدة أربعة أشهر للأشهر 4 إلى 12 بواسطة: m 4 (23 19 15 12) 4 17،25 م 5 (27 23 19 15) 4 21 م 6 (30 27 23 19) 4 24،75 م 7 (32 30 27 23) 4 28 م 8 (33 32 30 27) 4 30،5 م 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35.75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46.25 التوقعات لشهر 13 هي فقط المتوسط المتحرك للشهر قبل ذلك أي المتوسط المتحرك في الشهر 12 م 12 46.25. وبالتالي (كما أننا لا يمكن أن يكون الطلب كسور) توقعات لشهر 13 هو 46. تطبيق تمهيد الأسي مع ثابت تمهيد من 0.2 نحصل على: كما هو الحال قبل توقعات لشهر 13 هو مجرد متوسط للشهر 12 M 12 38.618 39 (كما نحن لا يمكن أن يكون الطلب كسور). لمقارنة اثنين من التوقعات نحسب متوسط الانحراف التربيعي (مسد). إذا قمنا بذلك نجد أنه بالنسبة للمتوسط المتحرك والمتوسط المتحرك الأسي مع ثابت التمهيد 0.2 بشكل عام فإننا نرى أن المتوسط المتحرك لمدة أربعة أشهر يبدو أنه يعطي أفضل التوقعات قبل شهر واحد كما أن لديه مسد أقل. وبالتالي فإننا نفضل توقعات 46 التي تم إنتاجها من قبل المتوسط المتحرك لمدة أربعة أشهر. التغيرات الموسمية الطلب على الأسعار الإعلان، على حد سواء هذه العلامة التجارية وغيرها من العلامات التجارية الوضع الاقتصادي العام التكنولوجيا الجديدة مثال على التنبؤ 1989 امتحان أوغ ويبين الجدول أدناه الطلب على ماركة معينة من فرن الميكروويف في متجر في كل من الأشهر الاثني عشر الماضية. احسب المتوسط المتحرك لمدة ستة أشهر لكل شهر. ماذا سيكون توقعاتك للطلب في الشهر 13 تطبيق تمهيد الأسي مع ثابت تجانس 0.7 لاستخلاص توقعات للطلب في الشهر 13. أي من اثنين من التوقعات لشهر 13 هل تفضل ولماذا الآن لا يمكننا حساب ستة حتى نحصل على 6 ملاحظات على الأقل - أي أننا لا نستطيع حساب هذا المتوسط إلا من الشهر 6 فصاعدا. ومن هنا يكون لدينا: م 6 (34 32 30 29 31 27) 6 30.50 م 7 (36 34 32 30 29 31) 6 32.00 م 8 (35 36 34 32 30 29) 6 32.67 m 9 (37 35 36 34 32 30) 6 34.00 m 10 (39 37 35 36 34 32) 6 35.50 m 11 (40 39 37 35 36 34) 6 36.83 m 12 (42 40 39 37 35 36) 6 38.17 إن توقعات الشهر 13 هي فقط المتوسط المتحرك ل شهر قبل ذلك أي المتوسط المتحرك لشهر 12 م 12 38.17. وبالتالي (كما أننا لا يمكن أن يكون الطلب كسور) توقعات لشهر 13 هو 38. تطبيق التمهيد الأسي مع ثابت تمهيد من 0.7 نحصل على: متوسط التحرك بسيطة مشاكل مع استخدام المتوسط المتحرك البسيط كأداة التنبؤ: المتوسط المتحرك هو تتبع الفعلي البيانات، لكنها دائما متخلفة. المتوسط المتحرك لن يصل أبدا إلى قمم أو وديان من البيانات الفعلية 1515 ينعم البيانات لا أقول لك كثيرا عن المستقبل ومع ذلك، هذا لا يجعل المتوسط المتحرك عديمة الفائدة 151 تحتاج فقط أن تكون على بينة من مشاكلها. سليد دسكريبتيون أوديو ترانسكريبتيون لتلخيص، لمتوسط متحرك بسيط أو متوسط متحرك واحد، شهدنا بعض المشاكل مع استخدام المتوسط المتحرك البسيط كأداة للتنبؤ. المتوسط المتحرك هو تتبع البيانات الفعلية، ولكن متخلفة دائما وراء ذلك. المتوسط المتحرك لن يصل أبدا إلى قمم أو وديان البيانات الفعلية 1515 ينعم البيانات، وأنه حقا لا أقول لك الكثير عن المستقبل، لأنه هو ببساطة التنبؤ فترة واحدة مقدما، ومن المتوقع أن تمثل أفضل قيمة للفترة المقبلة، فترة واحدة مقدما، لكنه لا اقول لكم أبعد من ذلك بكثير. وهذا لا يجعل المتوسط المتحرك البسيط عديم الفائدة 151 في الواقع ترى متوسطات متحركة بسيطة في الممارسة، فإن المتوسط المتحرك سيوفر تقديرا جيدا لمتوسط التسلسل الزمني إذا كان المتوسط ثابتا أو متغيرا ببطء. وفي حالة المتوسط الثابت، فإن أكبر قيمة m تعطي أفضل التقديرات للمتوسط الأساسي. وستؤدي فترة المراقبة الأطول إلى الحد من آثار التباين. والغرض من توفير m أصغر هو السماح للتنبؤ بالاستجابة للتغيير في العملية الأساسية. ولتوضيح ذلك، نقترح مجموعة بيانات تتضمن التغييرات في الوسط الأساسي للمسلسلات الزمنية. ويبين الشكل السلاسل الزمنية المستخدمة للتوضيح مع متوسط الطلب الذي نشأت منه السلسلة. يبدأ المتوسط ك ثابت عند 10. يبدأ في الوقت 21، يزداد بوحدة واحدة في كل فترة حتى يصل إلى القيمة 20 في وقت 30. ثم يصبح ثابتة مرة أخرى. وتتم محاكاة البيانات بإضافة متوسط الضوضاء العشوائية من التوزيع العادي مع متوسط الصفر والانحراف المعياري 3. وتقريب نتائج المحاكاة إلى أقرب عدد صحيح. ويبين الجدول الملاحظات المحاكاة المستخدمة في المثال. عندما نستخدم الجدول، يجب أن نتذكر أنه في أي وقت من الأوقات، إلا أن البيانات السابقة معروفة. وتظهر تقديرات معلمة النموذج، بالنسبة إلى ثلاث قيم مختلفة من m، مع متوسط السلاسل الزمنية في الشكل أدناه. ويبين الشكل متوسط المتوسط المتحرك للمتوسط في كل مرة وليس التنبؤ. ومن شأن التنبؤات أن تحول منحنيات المتوسط المتحرك إلى اليمين حسب الفترات. وهناك استنتاج واحد واضح على الفور من هذا الرقم. وبالنسبة للتقديرات الثلاثة جميعها، فإن المتوسط المتحرك يتخلف عن الاتجاه الخطي، مع زيادة الفارق الزمني مع m. والفارق الزمني هو المسافة بين النموذج والتقدير في البعد الزمني. وبسبب الفارق الزمني، فإن المتوسط المتحرك يقلل من الملاحظات نظرا لأن المتوسط يتزايد. انحياز المقدر هو الفرق في وقت محدد في متوسط قيمة النموذج والقيمة المتوسطة التي يتنبأ بها المتوسط المتحرك. التحيز عندما يكون المتوسط يزداد سلبيا. أما بالنسبة للمتوسط المتناقص، فإن التحيز إيجابي. التأخر في الوقت والتحيز التي أدخلت في التقدير هي وظائف م. وكلما زادت قيمة m. وكلما كبر حجم التأخر والتحيز. لسلسلة متزايدة باستمرار مع الاتجاه أ. فإن قيم التأخر والتحيز لمقدر المتوسط تعطى في المعادلات أدناه. لا تتطابق منحنيات المثال مع هذه المعادلات لأن نموذج المثال لا يزداد بشكل مستمر، بل يبدأ كتغيير ثابت للاتجاه ثم يصبح ثابتا مرة أخرى. كما تتأثر منحنيات المثال بالضوضاء. ويتمثل متوسط المتوسط المتحرك للتوقعات في المستقبل في تحويل المنحنيات إلى اليمين. ويزيد التأخر والتحيز تناسبيا. وتشير المعادلات أدناه إلى الفارق الزمني والتحيز لفترات التنبؤ في المستقبل عند مقارنتها بمعلمات النموذج. مرة أخرى، هذه الصيغ هي لسلسلة زمنية مع الاتجاه الخطي المستمر. ولا ينبغي لنا أن نفاجأ بهذه النتيجة. ويستند متوسط التقدير المتحرك إلى افتراض متوسط ثابت، والمثال له اتجاه خطي في المتوسط خلال جزء من فترة الدراسة. وبما أن سلسلة الوقت الحقيقي نادرا ما تتوافق تماما مع افتراضات أي نموذج، يجب أن نكون مستعدين لمثل هذه النتائج. ويمكننا أيضا أن نخلص من الشكل إلى أن تباين الضوضاء له أكبر تأثير على m أصغر. ويكون التقدير أكثر تقلبا بكثير بالنسبة للمتوسط المتحرك البالغ 5 من المتوسط المتحرك البالغ 20. ولدينا رغبة متضاربة في زيادة m لتقليل تأثير التباين الناجم عن الضوضاء وتقليل m لجعل التنبؤ أكثر استجابة للتغيرات في الحقيقة. والخطأ هو الفرق بين البيانات الفعلية والقيمة المتوقعة. وإذا كانت السلسلة الزمنية حقا قيمة ثابتة، فإن القيمة المتوقعة للخطأ هي صفر، ويتألف تباين الخطأ من عبارة دالة وعبارة ثانية هي تباين الضوضاء. المصطلح الأول هو التباين في المتوسط المقدر مع عينة من الملاحظات m، على افتراض أن البيانات تأتي من مجتمع ذو متوسط ثابت. يتم تقليل هذا المصطلح من خلال جعل m كبيرة قدر الإمكان. A م كبير يجعل التوقعات لا تستجيب لتغيير في السلسلة الزمنية الأساسية. لجعل التنبؤات تستجيب للتغييرات، نريد m صغيرة قدر الإمكان (1)، ولكن هذا يزيد من التباين الخطأ. ويتطلب التنبؤ العملي قيمة وسيطة. التنبؤ مع إكسيل تقوم الوظيفة الإضافية للتنبؤ بتطبيق صيغ المتوسط المتحرك. ويبين المثال الوارد أدناه التحليل الذي توفره الوظيفة الإضافية لعينة البيانات في العمود باء. ويتم فهرسة الملاحظات العشرة الأولى من 9 إلى 0. وبالمقارنة بالجدول أعلاه، يتم تغيير مؤشرات الفترة بمقدار -10. وتوفر الملاحظات العشرة الأولى قيم بدء التشغيل للتقدير وتستخدم لحساب المتوسط المتحرك للفترة 0. ويبين العمود (10) (C) المتوسطات المتحركة المحسوبة. وتكون معلمة المتوسط المتحرك m في الخلية C3. ويبين العمود (1) (D) توقعات لفترة واحدة في المستقبل. الفترة الزمنية المتوقعة في الخلية D3. عندما يتم تغيير الفاصل الزمني المتوقع إلى عدد أكبر يتم تحويل الأرقام في العمود فور إلى أسفل. ويبين العمود إر (1) (E) الفرق بين الملاحظة والتنبؤ. على سبيل المثال، الملاحظة في الوقت 1 هي 6. القيمة المتوقعة من المتوسط المتحرك في الوقت 0 هي 11.1. الخطأ ثم -5.1. ويحسب الانحراف المعياري ومتوسط الانحراف (ماد) في الخلايين E6 و E7 على التوالي.
Comments
Post a Comment